
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO, 7, JULY 1995
1559

Input Impedance of a Probe-Excited
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Abstract-Part I of this paper presents both the electric and

the magnetic types of dyadic Green’s functions defined for elec-

tromagnetic fields due to electric and magnetic current sonrces in

a semi-infinite rectangular waveguide tilled with arbitrary multi-
layered media. Applying the principle of scattering superposition,

the dyadic Green’s functions in each of the multiple loads are

constructed in general for such EM current sources located in an

arbitrary layer of the wavegnide. Analytical expressions of the
scattering dyadic Green’s functions’ coefficients are obtained in

terms of transmission matrices. To demonstrate how the method

presented is used and how the results are obtained for some

special cases, a semi-infinite rectangular waveguide with one load

is considered. The dyadic Green’s functions and their coefficients

in such a case are derived in closed form by reducing the

general formulae of the dyadic Green’s functions for the arbitrary

multiple case to those for the special case concerned. Further
comparison of the dyadlc Green’s functions obtained here with

previous publications shows good agreement, demonstrating the

applicability of the results presented here. Part II of this paper
will present a full-wave numerical analysis of a probe with both

electric and magnetic current dktribntions.

I. INTRODUCTION

T HE DYADIC Green’s function technique is an efficient

method for solving boundary-value problems in elec-

tromagnetic. Such a technique has also been extensively

applied to scattering and excitation problems associated with

rectangular cavities and waveguides [1], [2]. The electric

and magnetic types of dyadic Green’s functions have been

constructed for the rectangular cavity by Tai [1], Collin [21,
Rahmat-Samii [3], Liang et al. [4], and Li et al. [5]; for semi-

infinite rectangular waveguide by Jarem [6], [7], Tai [1], Collin

[2], Balanis [8], and Li et al. [5]; and for infinite rectangular

waveguide by Tai [1], Collin [2], Rahmat-Samii [31, Xu [91,
and Li et al. [5].

Recently, a i&component of the electric type of dyadic

Green’s functions was given by Jarem [7] for the analysis of

a probe-sleeve fed rectangular waveguide with one load. In

Part I of this paper, the dyadic Green’s functions in a semi-

infinite rectangular waveguide with arbitrary multiple loads are
presented. Since the magnetic type of dyadic Green’s function
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Fig. 1. Geometry of the semi-iufinite rectangular waveguide filled with
multilayered media of different dielectric constants.

cannot be converted directly from the electric type by simple

and conventional substitutions [10], both the electric and the

magnetic types of dyadic Green’s functions are derived in

this paper. The coefficients of the scattering dyadic Green’s

functions for IV-multiple loads are calculated analytical] y and

given in the recurrence form of a transmission matrix. A

semi-infinite rectangular waveguide with one load is used

to demonstrate how the method presented here is applied to

obtain the results for special cases by simple reduction. Good

agreement between the new results reduced here frcnm the

general case to the special case and some results previously

published elsewhere has been found.

II. FUNDAMENTAL PROBLEM

The geometry of the semi-infinite rectangular wavcguide

filled with arbitrary multi-layered media of different dielectric

constants is shown in Fig. 1, where the waveguide is dlivided
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along its length into N regions numbered as 1,2, ..., N,

respectively. The electromagnetic radiation fields, Et and

Mf (~ = 1,2,. ... N), in the ~th region of the semi-

infinite rectangular waveguide, which are contributed by the

electric and magnetic current distributions J. and A4s (s =

1,2,... , IV) located in the sth region, are governed by

V X V X Ef – k;Ef = (iw,ufJs – v x ~s)~;, (la)

V X V X Hf – k;Hf = (iWEfikf. + V X J,)/i; (lb)

where without any loss of generality, the propagation con-

stant in the fth region of the waveguide is designated as

kf = w~pfsf (1 + iaf/wsf ), and &f, #f, and of are the

permittivity, permeability, and conductivity in the ~th re-

gion, respectively. A time-dependence exp (–iwt) is assumed

throughout the paper for the construction of dyadic Green’s

functions and field calculations. It is noted that symbols in

both bold and italic face are used to denote vectors while

those in bold face only are reserved for matrices.

To obtain the electromagnetic fields due to the electric and

magnetic current sources, we first construct the electric and

‘~fs) (r, r’) andmagnetic types of dyadic Green’s functions G
~(fs)

m (T, T’) [5], [10], [11], respectively. These two dyadics

satisfy the following equations:

v x v x Gfs)(r, r’) - k;afs)(r, r’) = 78(T - 7-’), (2)

where 6(T–– r’) represents a Dirac delta function, and ~ denotes

the unit dyad operator. The boundary conditions satisfied by

the electric and magnetic types of Green dyadics are given by

the following formulae on the walls:

n x ip (?-,?-’) = o, ii x V x C~s)(T-, r’) = O (3a)

and at the interfaces .z = ZE (/ = 1,2, . . . ,lV – 2)

2x G:s)(r,r’) =,2 x G!(’+’)sl(r,r’), (3b)

–:’)(,,, /) = &&xVx G ;X v x Gy+’)sl(r, r’)
P! Kv+l

(3C)

where p denotes p for the electric type of dyadic Green’s

functions or the e-modes ands for the magnetic type of dyadic

Green’s functions or the o-modes. Furthermore, the Sommer-
feld radiation condition at .z ~ ec must be satisfied. i.e.

where 2 indicates the propagation direction of the electro-

magnetic waves in the waveguide, -y is the z-directional

propagation constant, and the differential operator Vz is given

by 28/& for an infinite waveguide.

After obtaining the electromagnetic types of dyadic Green’s

functions, the electromagnetic fields Ef and Hf in the ~th

region due to the electric and magnetic current sources J. and

lkf~ in the sth region can be obtained in terms of the electric

and magnetic types of Green dyadic integrals as follows:

M~(fs)
Ef (T) = iw~. ~ (r, T’) . J.(d) W’

v

Hf (T) =

-M v x [G:s)(7-,7-’)] . M,(T’) W’, (4a)

v

///
V x [~$fs)(r, d)] . J.(d) W’

~.

///

~(fs)
+ iwe. ~ (7-,?-’) . M,(?-’) W’ (4b)

v

where V identifies the volume occupied by the sources in the

sth region and the subscripts, e and m, denote the electric and

magnetic types of Green dyadics.

III. ELECTROMAGNETIC TYPES

OF DYADIC GREEN’s FUNCTIONS

To obtain the electromagnetic types of dyadic Green’s

functions in the spectral domain, two methods are available,

namely, 1) the direct dyad representation in terms of the unit

coordinate vectors and 2) the indirect dyad representation in

terms of vector wave eigenfunction expansions. In our present

work, the latter will be applied to construct the electromagnetic

types of dyadic Green’s functions.

To do so, the scalar eigenfunction I&mm(~) (m, n =

0,1,2,.. .) is derived by the method of separation of variables.

In the case of the rectangular waveguide, the function has the

following form:

{

~o~ n7r(z + XO) Trm(y + yo)
Cos

4:7nn(7)=
/

n7r(ra+ xo) sin m7r(yb+yo) e‘~z. (5)

sin
a b

Furthermore, the rectangular vector wave eigenfunction can

be expressed in terms of the scalar eigenfunction (5) as

follows:

where k: is given by the following definition:

‘2=72+(:)2+(?32=72+’:‘7)
The orthogonality of these vector wave functions is maintained

not only among themselves but also with respect to each other

as they are integrated over all the values of z, y and z as shown

in [1]. With the help of these vector wave functions, the dyadic

Green’s functions can be constructed with the outgoing and

incoming wave vectors.

The magnetic type of dyadic Green’s functions due to the

magnetic current source can usually be converted directly

from the electric type due to the electric current source by

the simple substitutions E ~ H, H ~ –E, J -+ M, M ~

–J, u ~ c, and s --+ ~ [10]. However, it was found in [5]
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that for the rectangular cavities and waveguides, an additional

substitutions, i.e., even mode (e) ~ odd mode (o) and odd

mode (o) + even mode (e), should be made in the derivations.

This paper presents both the electric and magnetic types

of dyadic Green’s functions for the rectangular cavities and

waveguides. To present both electric and magnetic types in

the & format requires no extra space, but gives readers a

straightforward expression to work with.

In deriving the dyadic Green’s functions at the source re-

gions, as mentioned by Rahmat-Samii [3], care must be exer-

cised. At the source regions, singularities exist and therefore

need to be taken into account in the representation of dyadic

Green’s functions. In fact, a delta function can be used to

express the singularity term. In addition, the principle of scat-

tering superposition may be applied in the construction. This

–(fsqr, 7-’)principle states that the dyadic Green’s function G%

can be considered as the sum of the unbounded (with respect to

z-direction) dyad ~% o(r, r’) and the scattering Green dyadic

~!f~) (r, r’) contributed by the interfaces perpendicular to the

Xlirection, i.e.

–(f.)
G% (T, T’) = ~~o(r, T’)6; + ~f;) (T, ‘r’) (8)

where b? denotes Kronecker delta, and the unbounded electro-

magnetic types of dyadic Green’s functions ~%o (r, T’) con-

sisting of the singularity and the principal value is, according

to the Sommerfeld radiation conditions in (3d), given by

G%(J(r, ?-’)

_ .2.28(?--?-’) m m 2–C%
—

~: +;xx~
n=o m=o ~’ c

“{

M:mn(’y.JM:mn(-7s) + N:mn(%)~&J-’YJ
.Z> />

M:mn(-l?)M&(%) + ~:m.(-%)~:mn(%)
Z< z’,

(-co< z<co; -m<z’<m) (9)

in which 60 (= 1 for m or n = O, and O otherwise) denotes

the Kronecker delta and -y: = k: – k: and PVf represents the

principal value. The scattering Green

be presented as follows [5], [10]:

1561

dyadic G~~) (T, r’ ) can

“ {M:m(7f )[#TE~;m.(7s)

‘f’)TE~;mn(-7s)l+ (1 – $Y:mn

(fs)TMNJJy)+ ~:mn (’Yf) [~:mn

(fs)TM~/
+ (1 – ~Y)B:mn :rnn(-%)1

‘(fs)TE~imn(7s)+ (1 – 8y)M:mn(–7f)[cl:mn

‘(fs)TE~&n(-7.)1+ (1 – dw$mn

‘( fs)TMN;mn(Ts)+ (1 – 6y)N:mn(–ld[~:mn

‘( fs)TM~/
+ (1 – &)Pgmn ‘@n(%)]}>

(ZO<Z<CO;20<.J<CO) (lo)

where the symbol N appearing in the present and subsequent

Kronecker deltas denotes the region number of the lcladed

waveguide. The
~~fs~E,TM @%~E,TM

coefficients ~m , , ?o
&s)TE,TM ‘( fS)TE,TM

~mn and /3. ~n are to be determined from the

boundary co~dition~.

IV. COEFFICIENTS OF EM TYPES OF

SCATTERING DYADIC GREEN’s FUNCTIONS

Without any loss of generality, the electric and magnetic

sources are assumed to be located in the sth region in the

semi-infinite rectangular waveguide. Rewriting the boundary

conditions satisfied by the electromagnetic types of dyadic

Green’s functions in (3a)–(3c) in matrix forms, we obtained

the expressions. For the sake of succinct representation, we

express the formulae for the coefficients of the electric (e) and

magnetic (m) types of dyadic Green’s functions as follows:

[

ei~lzo (+)(+ -)e-i~’zo

o 0 1

“[
(ls)TE,TM

aemn
“ @;~E,TM

@TE)TM 1‘(ls)TE,TM ‘~ ‘1 la)
.m + 6; P:mn

[

[(4+1 )s]TE,TM
Clzmn

‘[(~+ l)sITE,TM + ~$+1
Cl!:mn $z:~:::]=,+;j$::M: ‘5:X:;+’)’]

“[

es ,
: mn

~@) TE,TM 1 (llb)

. mn

#kk;TE,TM e J

.

[

##TETM #~; TE,TM 1 1

[

ei(7N–1–7N)~N–1 ~~:;l)TE,TMe-Z(yN-I+TN) ZN-I

Is; 0 0
= @-l) TE,TM @&l)TE,TMe~(VN-I+~N) %N-l 0 #(7 N-1–7N)z Jv-l 1:mn o

“[

[( N–l)s]TE,TM
Okmn

~~(fln-@lTETM + ~~_l

‘~(N–l)s]TE,TM 1 (llC)
Q;mn

“ /j~{-l)s]TE,TM

o
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and (1 lb) and (1 lc), shown at the bottom of the previous

page, where the notations (+) and (+) are designated for

the subscript ~ (corresponding to the electric and magnetic

types of dyadic Green’s functions, respectively), the notations

(+–) and (–+) for the TE and TM waves, respectively, and
1?~~~Tb~ and T.e~~>TM are given below in (12a)–(12d)o 0

The formulas of these coefficients can be derived generally

from the above matrix equation system. For the sake of

simplicity, the following inter-parameters are used in our

representation [(1 3b) is shown at the bottom of the page]:

[

(Es) TE,TM
&)TE,TM _ agmn

/##E>TM

gmn .
‘(gs)TE,TM I#’@TE,TM > (13a)

Clzmn

‘l=K:1‘2=P3 (13C)

For the sake of simplicity, we further define

Thus, the coefficients can be derived conveniently in the

following three cases: s = 1,s # 1, IV and s = lV.

A. The Source Located in the First Region

As the electric and magnetic current sources are located

in the first layer, (1 lb) and (1 lc) can be written in the terse

combined form

&JIJITE,TM _ @-l) TE,TM~(N-2)TE,TM
— : mm : mm

. . . @2) TE,TM
o :mn

@TE>TM(&&TE,TM + Al)
:mn

ll)TE, TM
–F!~n(c$mn— + Al).o (15)

Since two components of C$~~TE’ThI vanish, the coeffi.

cients for the first layer and the” last layer can be obtained by

solving (11 a) and (15). After obtaining the coefficients for the

first layer and the last layer, the results for the intermediate

layers can be derived easily from the recurrent relation. The

coefficients are given by

(16a)

(16b)

(16c)

and

‘ll)TE’TM + (F4:J12##ETM = (Fg)whmn

‘(ll)TE,TM
. Clzmn

/$v’’)TE,TM = (F(l)
o @n)@fi~TE’TM + (@ln)12&T:::o .

+ (Fgn)ll. (18b)

B. The Source Located in the Intermediate Region

To derive the coefficients in each layer is not so easy when

the sources are located in the intermediate layers. From (1 lb)

and (1 lc), we have

C(NS)TE,TM _ @N-l) TE,TM@N-2)TE,TM
~mn

—
; mn : mn

. . .
#s) TE,TM

: mm

@TE>TMTjO)l#TivI. [’@;:)TE’TM . . . ~mn ~

. &~TE’TM + (Al – A2)]

– #1) &~E’TM + ~~~n(Al – A2). (19)
;mn ~

Furthermore, the whole set of coefficients of the scattering

dyadic Green’s functions can be given when the sources are

located in the sth intermediate layer by
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‘(].)TE,TM _
(&&e+o

chmn

– (d)n)22ei~’”0 (+)(+-)(Fjfln),,e-’71z0‘
o

(20C)

–(~f@n)2@z0

P~!2TE’TM = ~Fjjn)22ei7,zo (T)(+-)(F~fln)21 e-i~lz0 ‘

(20d)
&)TE,TM _ r&l)TE,TM , . .

:mn — ;mn

. ~$~nE’TM (yi::)TETM . . . @WJE,TM
o 0

. C~~~E’TM + H(1 – s – l)AI

– IT(4 – S)A2)

(21)

and

(Ns)TE,TM
Chmm = (F$.),lagm. ‘lS)TE’TM + (F$n)12

‘I(19)TE,TM _ (@~n)12>
. Cl:mn (22a)

p~:/T%TM = (F(l)~mn)l@!:iTE’TM + (F$!n)12
o 0

. ti:JTE’TM + (Fgn)ll (22b)

where H(l – l.) (equal to 1 for 1 ~ 10 and O for / < 10)

denotes the step function.

C. The Source Located in the Last Region

Following the procedure similar to the above, we have

(23a)

When the EM sources are located in the last layer, only half

of the coefficients for the scattering dyadic Green’s functions

need to be obtained. Therefore, the coefficients can be given

as follows:

and

(mT)TqTM + (F$fln)12
J::)TE’TM = (@’gn)llLmn

. ~:(lN)TE,TM
. mn

(26)

Y/- X. - .

Fig. 2. Geometry of the seti-infinite rectangular waveguide with one load.

V. APPLICATION TO SEMI-INFINITE

WAVEGUIDE WITH ONE LOAD

The dyadic Green’s functions have different mathematical

forms when the current source is located in the difkrent

regions of the waveguide. When the semi-infinite waveguide

has one load, the waveguide can be considered as one filled

with a two-layered medium. In this case, the dyadic Green’s

functions can be reduced from (15) in sequence in the order

of the source present in regions I and II

“[
~lWTMe-(i71+7z)z1ei(’Y1-’Y2)zl

: mn

~lTE)TMei(71+72)z1 ~—qm-~z)zl 1>:mn
,(27a)

l(27b)

A. Excitation Source Present in Region I

The scattering dyadic Green’s function represents the con-

tribution due to the presence of the waveguide interfaces

perpendicular to z-direction. Thus, taking the reflected waves

into account when the source is located in region I shown in

Fig. 2 (i.e., s = 1), we may construct the scattering Green

dyadic as follows according to (10):

for f = 1,

“ {M:mn(71)[a~:iTE~; mn(71)

yTEA’q(-71)]+Dem.

(1’)TMN:mn(71)+ ~’gmn(m)b:mn

(l’)wv;mn(-vi)]+ P:mn

‘(11)TE~;mn(71)+ ll’f:mn(-~l)[a:mn

‘( ’’)%f;mn(-v,)]+ B:mn

‘(lwwmn(vl)+ N:mn(–’yl)[a:mn

‘(wN;mn(-71)1}~
+ P:m.

(20<2<21; 20</<%) (28a)
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and for f = 2,

“ {M:mn(72)[@y:iTEM; mn(71)

:7WJ(-71)1
+ /#QTE~f

.

+ Ngmn(72)[ai:rM~; mn(71)o

21)TMiv;mn(-71)]},+ Pimn

0(21< z<m; zo<z’<zl) (28b)

. “

s) TE, TM
“

and fl~~n are determined from the boundary conditions.

Fro”m the boundary conditions in (3a)–(3c), the general so-

lutions of these coefficients of scattering dyadic Green’s func-

tions in each of the regions have been obtained in (16a)–(18b)

when the EM current sources are located in region I. The

unknowns in (28) are coefficients for the special case and

can be reduced directly from the general solutions obtained

in ( 16a)–( 18b). When the excitation source is located in the

first region, six sets of coefficients of the scattering Green

dyadic are derived. They are given, for region I, by

(II) TE)TM
CL?mn = (+)(+ –) DT~,TM ‘-’27’”0, (29a)

:mn

ITE,TM
~:(ll)TE,TivI

. mn = (*)(+-)~XTM ei2~’f2’-z0), (29c)

:mn

and for region II

(29d)

a$~E’TM=(~)(+–) ‘jf~ET~“(71-72)”1-22’120,
: mn

(30a)

(30b)

where

R
1,2TE _ @l,2~2,3 – @2,3~l,2
gmn —

@l,2?’2,3 + @2,3?1,2 ‘
(31a)

%?1,2TM _ @2,3~2,3&,2 – ~1,2’’fl,2~~,3
:Wzn — (31b)

~2,3~2,3&.2 + pl>271,2& ‘—,-
p,2TE = ~ _ @&

:mn o (31C)

(31d)

lTE,TivIei271 (Zl –3. )
DT::M = 1(7)( +–)7z:mn

o . (31e)

It should be pointed out that the parameters Z*~:2)(TET~I)

are not the same as ~1~~) (TE~TW
o

in (12c) and (12d). It
should also be pointed “out that the same expression of the

(ll)TE,TM
coefficients /Lmn

~d ~:(ll)TE,TM
. mn shows the symmetry

of the dyadic- Green’s functions.

B. Excitation Source Present in Region II

Using a method similar to the above, the scattering dyadic

Green’s function in the case of the sources located in region

II shown in Fig. 2 (i.e., s = 2) can be written as follows for:

. {[cd:~EM:mn(7,)+ (#p

“ %mn(-71)l M:mn(72)

(12) TM~:mn(71) + ~:(:~TM
+ [agmn

“ N:mn(-Tl)llv;mn(72 )}:

(2, <2<2,;2, <Z’< CO)

and for f = 2

(32a)

(z, <Z<co; z, <2!< 03) (32b)

(f s)WTM, @fs~TE,TM , ##W,where the coefficients az ~n
(f$)TE,TM

and ~. ~n are determined from the boundary conditions.

These” three sets of coefficients are given, for region I, by

and

lTE, TM
(12) TE,TM

CL!:mn = (%)(+–) ~~~,TM “(71-72)” ’27”0,
: mn

T ITE>TM
J12)TE,TM = :mn

~mn TE,TM
et(m –72)21

D
>

: ?nn

for region II

(33a)

(33b)

R lTE,TM
~~22)TE,TM = ;mn

(+)(+ _)e%(z,-zo)

. mn
e—L272,z1

D
TE,TM
;mn

(34)

VI. DISCUSSION AND CONCLUSION

A. Comparison with Jarem ’s Results

Previously, Jarem [7] derived the &y-component of the

dyadic Green’s function for defining the electromagnetic fields

due to an electric current distribution in a semi-infinite rect-

angular waveguide with one load. Since the probe used in [7]

is located in region I, the dyadic Green’s function that Jarem

derived should be the one associated with (28a). Although

Jarem also used the principle of scattering superposition to

construct the needed dyadic Green’s function, his idea to

achieve the goal is slightly different from the one presented

here. The difference can be seen from the following aspects.-.
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The Green dyadic in the semi-infinite rectangular waveguide

with loads usually consists of two parts. Jarem assumed that

the principal part corresponding to V,S (z, z?) is the Green

dyadic in the semi-infinite rectangular waveguide without load

and the additional part corresponding to V~E (z, z’) (for TE

waves) and V~M (,z, z’) (for TM waves) results from the

transmission and reflection due to the semi-infinite load’s

interface. This paper assumes that the principal part is the

Green dyadic in the rectangular infinite waveguide without

load and the additional part results from the transmission and

reflection due to all the interfaces perpendicular to z-direction.

From (9) and (28a), the jj-component of the Green dyadic

can be written as follows by letting kl = kO, and ~~~ = z71 =

- and taking onlY the electric tYPe of fie Green dYad

+ T~”(z, 2’)) sin
‘rM’r(% + Zo) sin n7r(z’ + Zo)

a a

. ~os Trw’r(y + go) ?7Mr(y’ + go)

b
Cos

b
(35)

where

~s(”, z’)= [(m~/~)2 - ~;]k:
k;

“{

~’Ynm(.Z-zO) Sinh [~nm(z’ – ZO)] z ~ 2’

sinh [Tnm(Z — zo)]e~~~(z’–zo) Z< Z”>

(36a)

~m 2 zrTEe2%~ (ZI –zo )

()
@:*(z, z’) = ;

1 + rTEe2~.m (z1 –z. )

. sinh [~n~(.z – ZO)] sinh [cYnm(z’ – .zo)],

(36b)

V:M(.,Z’) = (y)’(;)’ ,::::7::;:::0)

. sinh [~nm(z – .zO)] sinh [~~m(z’ – .zo)],

(36c)

rTE = _ ~1~2 – #2?’1
(36d)

W172 + V271 ‘

rTM = ~’~zk? – fll~lkl (36e)
p’y’~? + pl’-ll~; “

The result presented by (35) together with (36a)–(36e) is

more complete and generalized than the Green function given

by Jarem [7] because the result obtained here is a full-wave

analytical solution of G Yy and no approximation has been
made in the above expression. The expression G& given by

Jarem [7] does not have the contribution from the TM modes

and higher-order TE modes as well. If we assume that only

TEIO-mode waves, i.e (n, m,) = (1, O) in (35) together with

(36a)-(36e), propagate in the semi-infinite waveguide with
a load, the approximate results are exactly Jarem’s formula

of G$.. [7], except that the reflection coefficients for the

TE modes of different orders are assumed to be the same.

Certainly, both the reflection and transmission coefficients of

the TE and TM modes should be different, as can be seen

from the results presented here and those given by Tai [1] for

a medium of various geometries. This shows the applicability

and generalization of the method presented.

B. Reduction to Semi-in.nite Waveguide without Load

The dyadic Green’s functions are obtained for defining the

electromagnetic fields due to the electric and magnetic current

sources located in the semi- infinite rectangular waveguide

with multiple loads. If the loads disappear on the assumption

that the multi-layered media have the same dielectric constant,

the derived general formulae of dyadic Green’s functions for

the waveguide with multiple loads should reduce directly to

the results for the waveguide without load. To demonstrate

how the coefficients of the dyadic Green’s functions are

reduced to the simple forms, we use the expression obtained

in (29a)–(30b) and (33a)–(34) as an example.

In fact, 71 = 72 when the different layers have the same

dielectric constant. Thus, it can be seen from (3 la)-(3 le) that

Furthermore, from (10), we can see that in the expressicln of

the dyadic Green’; $Tnfition in (32b), only the terms containing

the coefficients a.:m~ exist. From (29a), (30a), (33a) or 1(34),

we find

(37)

This result agrees very well with the electric and magnetic

types of Green dyads presented earlier in [5], which once again

demonstrates the applicability of the present method.

C. Reduction to Rectangular Cavity Case

Furthermore, we may reduce the formulae of dyadic Green’s

functions and their coefficients for the semi-infinite rectangular

waveguide to those for the rectangular cavity. Region I of the

geometry shown in Fig. 2 can be considered as a rectangular

cavity when the load of the semi-infinite rectangular wave-

guide is filled with conducting material. This reduction can be

achieved easily by assuming that cr e cc. That means

(r&’=& 1+~ +=%.
WE

Thus, the coefficients for such a cavity can be obtained from

(29a)-(29d). It has been proven that the coefficients redkced
here are exactly the same as those obtained by Li et al. [5]

from boundary conditions.

From the above discussions, we may draw the following

conclusions. The electric and magnetic types of dyadic Gneen’s

functions for a rectangular waveguide with multiple loads

have been analytically formulated from the corresponding

boundary conditions for the general case. Rigorous and gen-

eral expressions of the dyadic Green’s functions and their

coefficients are obtained in terms of recurrent transmission
matrices. By reducing these general expressions, the ctyadic

Green’s functions and their coefficients for the semi-infinite

rectangular waveguide with one load are further derived and

compared with the $~-component presented in previcmsly

published work. The results presented here are more comlplete

than Jarem’s results [7]. After reduction of the general results



1566 JEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 7, JULY 1995

for the special cases, the good agreement 1) between Jarem’s

~~-component of dyadic Green’s functions and the results

specially reduced here, and 2) between the dyadic Green’s

functions presented earlier by Li et al. [5] and the dyadic

Green’s function reduced here from the general formulae, has

demonstrated the applicability of both the results obtained

and the method presented. A full-wave numerical analysis of

input impedance of a probe-excited semi-infinite rectangular

waveguide will be carried out in Part II of this paper by using

the dyadic Green’s functions presented in this part.
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