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- Input Impedance of a Probe-Excited
Semi-Infinite Rectangular Waveguide
with Arbitrary Multilayered Loads:
Part I—Dyadic Green’s Functions

Le-Wei Li, Member, IEEE, Pang-Shyan Kooi, Member, IEEE, Mook-Seng Leong, Member, IEEE,
Tat-Soon Yeo, Senior Member, IEEE, and See-Loke Ho

Abstract—Part 1 of this paper presents both the electric and
the magnetic types of dyadic Green’s functions defined for elec-
tromagnetic fields due to electric and magnetic current sources in
a semi-infinite rectangular waveguide filled with arbitrary multi-
layered media. Applying the principle of scattering superposition,
the dyadic Green’s functions in each of the multiple loads are
constructed in general for such EM current sources located in an
arbitrary layer of the waveguide. Analytical expressions of the
scattering dyadic Green’s functions’ coefficients are obtained in
terms of transmission matrices. To demonstrate how the method
presented is used and how the results are obtained for some
special cases, a semi-infinite rectangular waveguide with one load
is considered. The dyadic Green’s functions and their coefficients
in such a case are derived in closed form by reducing the
general formulae of the dyadic Green’s functions for the arbitrary
multiple case to those for the special case concerned. Further
comparison of the dyadic Green’s functions obtained here with
previous publications shows good agreement, demonstrating the
applicability of the results presented here. Part II of this paper
will present a full-wave numerical analysis of a probe with both
electric and magnetic current distributions.

I. INTRODUCTION

HE DYADIC Green’s function technique is an efficient

method for solving boundary-value problems in elec-
tromagnetics. Such a technique has also been extensively
applied to scattering and excitation problems associated with
rectangular cavities and waveguides [1], [2]. The electric
and magnetic types of dyadic Green’s functions have been
constructed for the rectangular cavity by Tai [1], Collin [2],
Rahmat-Samii [3], Liang et al. [4], and Li et al. {5]; for semi-
infinite rectangular waveguide by Jarem [6], [7], Tai [1], Collin
[2], Balanis [8], and Li ez al. [5]; and for infinite rectangular
waveguide by Tai [1], Collin [2], Rahmat-Samii [3], Xu [9],
and Li et al. [5].

Recently, a gf-component of the electric type of dyadic
Green’s functions was given by Jarem [7] for the analysis of
a probe-sleeve fed rectangular waveguide with one load. In
Part I of this paper, the dyadic Green’s functions in a semi-
infinite rectangular waveguide with arbitrary multiple loads are
presented. Since the magnetic type of dyadic Green’s function
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Fig. 1. Geometry of the semi-infinite rectangular waveguide filled with
multilayered media of different dielectric constants.

cannot be converted directly from the electric type by simple
and conventional substitutions [10], both the electric and the
magnetic types of dyadic Green’s functions are derived in
this paper. The coefficients of the scattering dyadic Green’s
functions for N-multiple loads are calculated analytically and
given in the recurrence form of a transmission matrix. A
semi-infinite rectangular waveguide with one load is used
to demonstrate how the method presented here is applied to
obtain the results for special cases by simple reduction. Good
agreement between the new results reduced here from the
general case to the special case and some results previously
published elsewhere has been found.

II. FUNDAMENTAL PROBLEM

The geometry of the semi-infinite rectangular waveguide
filled with arbitrary multi-layered media of different dielectric
constants is shown in Fig. 1, where the waveguide is divided
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along its length into N regions numbered as 1,2,---, N,
respectively. The electromagnetic radiation fields, E; and
Hy (f = 1,2,---,N), in the fth region of the semi-
infinite rectangular waveguide, which are contributed by the
electric and magnetic current distributions J, and M (s =
1,2,---,N) located in the sth region, are governed by

V xV x Ef ~ kiEs =(iwpsJ. =V x M,)63,
V xV x Hy - k}H¢ = (iwef M, + V x J,)63

(1a)
(1b)

where without any loss of generality, the propagation con-
stant in the fth region of the waveguide is designated as
ki = wy/pres(l+1io5/wey), and ep,uy, and oy are the
permittivity, permeability, and conductivity in the fth re-
gion, respectively. A time-dependence exp (—iwt) is assumed
throughout the paper for the construction of dyadic Green’s
functions and field calculations. It is noted that symbols in
both bold and italic face are used to denote vectors while
those in bold face only are reserved for matrices.

To obtain the electromagnetic fields due to the electric and
magnetic current sources, we first construct the electric and

magnetic types of dyadic Green’s functions Eifs)('r, ') and
GY) (1) [5], [10], [11], respectively. These two dyadics
satisfy the following equations:

VxVx G (r,r) - G () = Tor - 1), @

where 6(r—7') represents a Dirac delta function, and I denotes
the unit dyad operator. The boundary conditions satisfied by
the electric and magnetic types of Green dyadics are given by
the following formulae on the walls:

Aax G ) =0, axVxGlrr)=0 (3a)
and at the interfaces z = 2z, ({ = 1,2,.--,N — 2)
z X @gs)(r, ') =% x E@E‘“)S] (r,7), (3b)
1 s s
~EXVXGY )('r,r’) = L% X V x GV ]('r,r’)
e ™ Pe+1 i
(30)

where p denotes p for the electric type of dyadic Green’s
functions or the e-modes and ¢ for the magnetic type of dyadic
Green’s functions or the o-modes. Furthermore, the Sommer-
feld radiation condition at z — oo must be satisfied, i.c.

lim [V, x —égnNs)(r, ') — iy x E;NS)(T, )] =0 (3d)

ZzZ—00

where 2z indicates the propagation direction of the electro-
magnetic waves in the waveguide, v is the z-directional
propagation constant, and the differential operator V,, is given
by 20/8z for an infinite waveguide.

After obtaining the electromagnetic types of dyadic Green’s
functions, the electromagnetic fields E; and Hy in the fth
region due to the electric and magnetic current sources J,; and
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M, in the sth region can be obtained in terms of the electric
and magnetic types of Green dyadic integrals as follows:

B5(r) =ion, [[[ @ 0,0)- ) av
A7
- G 7)) - M,(v')dV’,
/V/ V x[G,, '(r,7)] - M (r')dV (4a)
150 = [[[Vx @) 1) av

V
+ iwe, / / / @S,{S)(r, ) M (') dV’ (4b)
Vv

where V identifies the volume occupied by the sources in the
sth region and the subscripts, e and m, denote the electric and
magnetic types of Green dyadics.

II. ELECTROMAGNETIC TYPES
OF DYADIC GREEN’S FUNCTIONS

To obtain the electromagnetic types of dyadic Green’s
functions in the spectral domain, two methods are available,
namely, 1) the direct dyad representation in terms of the unit
coordinate vectors and 2) the indirect dyad representation in
terms of vector wave eigenfunction expansions. In our present
work, the latter will be applied to construct the electromagnetic
types of dyadic Green’s functions.

To do so, the scalar eigenfunction tepn(y) (m,n =
0,1,2,--.) is derived by the method of separation of variables.
In the case of the rectangular waveguide, the function has the
following form:

o5 na(z + xo) cos mw(yb—}— o) ‘

a 1Yz
nw(z +x0) . ma(y+yo) (© ©)

sin
a b
Furthermore, the rectangular vector wave eigenfunction can

be expressed in terms of the scalar eigenfunction (5) as
follows:

T/ngn ('7) =

sin

Mrn(7) =V X [emn(7)2], (62)
1 s
Ngmn(f)/) = EV x V x W}gmn(’)’)z] (6b)
where k2 is given by the following definition:
2.2 nmw 2 mr 2 9 2
ot () () e o

The orthogonality of these vector wave functions is maintained
not only among themselves but also with respect to each other
as they are integrated over all the values of x, y and z as shown
in [1]. With the help of these vector wave functions, the dyadic
Green’s functions can be constructed with the outgoing and
incoming wave vectors.

The magnetic type of dyadic Green’s functions due to the
magnetic current source can usually be converted directly
from the electric type due to the electric current source by
the simple substitutions ¥ — H . H — —E,J — M, M —
—J,u — e, and € — pu [10]. However, it was found in [5]
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that for the rectangular cavities and waveguides, an additional
substitutions, i.e., even mode (¢) — odd mode (o) and odd
mode (0) — even mode (e), should be made in the derivations.
This paper presents both the electric and magnetic types
of dyadic Green’s functions for the rectangular cavities and
waveguides. To present both electric and magnetic types in

the ¢, format requires no extra space, but gives readers a

straightforward expression to work with.

In deriving the dyadic Green’s functions at the source re-
gions, as mentioned by Rahmat-Samii [3], care must be exer-
cised. At the source regions, singularities exist and therefore
need to be taken into account in the representation of dyadic
Green’s functions. In fact, a delta function can be used to
express the singularity term. In addition, the principle of scat-
tering superposition may be applied in the constructlon This

principle states that the dyadic Green’s function G ( ,7)
can be considered as the sum of the unbounded (with respect to
z-direction) dyad an o{r,r"} and the scattering Green dyadic
-ég g) (r,r') contributed by the interfaces perpendicular to the
z-direction, i.e.
égs)(r, ') = G o(r, )6} —i——éénf;)(r, ) )
where 6% denotes Kronecker delta, and the unbounded electro-
magnetic types of dyadic Green’s functions Ge o(r,7’) con-

sisting of the singularity and the principal value is, according
to the Sommerfeld radiation conditions in (3d), given by

G: o(r,7’)
/
= _@(k__) + PVsGe o(r,7)
zz5 (r—17) ; 2 — &g

Mgmn(%)Mfe,mn( ’Ys) +N°mn(7s)Nomn( —7s)
z > 2,

Mgmn(—’Ys)M%mn(’Ys) + Ng'mn( ’Ys)Nomn(’Ys)
z2< 2,

(—00 < 2 < 003 —00 < 2’ < 00) )

in which &y (= 1 for m or n = 0, and 0 otherwise) denotes
the Kronecker delta and 2 = k2 — k2 and PV; represents the
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principal value. The scattering Green dyadic G(f )(r ') can
be presented as follows [5], [10]:

ab HZOME_: 2751420

AM (V) [0NTEME,, (72)

+ (1= )BT M (— )]

+ Nomn(v7) [0S d ™ NG o (7:)
+ (1= 8M)BUI™MNG (=)
+ (1= 6N )M (=10 [0 ) T M (1)

+ (1= )8 ML ()]

+ (1= 8 ) Nemn(—yp)laeds ™ N, ()

+(1- 6N)ﬂe££ffTMNém< —7s)1},

(20 <2< 00;20 < 2 < 00)

G(fS)

(10)

where the symbol N appearing in the present and subsequent

Kronecker deltas denotes the region number of the loaded
(f5)TE,T™M ﬁ(fs)Th,TM

waveguide. The coefficients  oey,y
I%Z)TE TM ﬂ A S)TE T™ are to be determined from the

boundary condltlons

1V. COEFFICIENTS OF EM TYPES OF
SCATTERING DYADIC GREEN’S FUNCTIONS

Without any loss of generality, the electric and magnetic
sources are assumed to be located in the sth region in the
semi-infinite rectangular waveguide. Rewriting the boundary
conditions satisfied by the electromagnetic types of dyadic
Green’s functions in (3a)—(3c) in matrix forms, we obtained
the expressions. For the sake of succinct representation, we
express the formulae for the coefficients of the electric (e) and
magnetic (m) types of dyadic Green’s functions as follows:

[0 (i)<+—0)e—m]

(1s)TE,TM (1s)TE,TM
(1:)7;g ™ ﬂe(TsT)lTE ™ } =, (113
gmn +67 Pom

ftes)TE, ™

a[(z+1)s]TE ,TM 6[(e+1) s]TE,TM 1
[ e[(ﬂf;—l)s]TE IM | 55“ ﬁ an::l) s|TE TMjl FE—T—M
¢mn
l:ag]r\/'ns;l)TE,TM ﬁ(Ns)TE TM:\ 1 {
s N—1)TE,TM
2 0 T "

(N =1)s]TE,TM

emn

Rf}‘n]i’TM i(Ye+vet1)ze

(£s)TE, TM
ae mn

ety —1=TN)zZN -1

'R,(N 1)TE,TM (N —1+YN)ZN -1

{ae(,],;]n 1)s]TE,T™M

er(ve—ye41)2e

ETE,TM o —e(ye+ve+1)2e
Rgmn € *
6—1(’\/2—’)’24-1)2@

(¢s)TE, TM s
/Bémn + 5 } , (llb)

ﬂ (es)TE ™

‘mn

R(N 1)TE,T™M —’l(’YN 1+HYN)EN -1
—1(’YN—1 YN)EN -1

[(N 1)s]TE,TM s

gl [(N 1)s]TE,T™M
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and (11b) and (11c), shown at the bottom of the previous
page, where the notations (£) and (F) are designated for
the subscript { (corresponding to the electric and magnetic
types of dyadic Green’s functions, respectively), the notations
(+—) and (—+) for the TE and TM waves, respectively, and

RerBTM and TEEET™ are given below in (12a)-(12d)

Rf;;]i _ RFYF+1 — @f+1’)’fﬂ (12a)
° QrYF+1 T P17y

,RfTM _ @f—I—l’Yf—i—lk]zv - @f’yfk?f-;-l (12b)
T pprvak + okt

T =1+ RN, (12¢)

k

TIIM - BITFL (g | RITMY (12d)

° pr+1ky °

The formulas of these coefficients can be derived generally
from the above matrix equation system. For the sake of
simplicity, the following inter-parameters are used in our
representation [(13b) is shown at the bottom of the page]:

[ _(€s)TE,TM  ,(¢s)TE,TM
C(ES)TE,TM _ | %emn /Bgmn 13
Smn = | syt T™M L (es)yTE,TM |0 (13a)
L emn IBgmn

0 1 00
A = 0 0}, Ay = [1 0]. (13c)
For the sake of simplicity, we further define
(&) _ [(Fg(frfi)ll (Fg('rIrf’l)l)].Z}
RN 102 =2 PR AP P
N—1)TE,TMq (N ~2)TE,TM K+1)TE,TM
TR, (14)

Thus, the coefficients can be derived conveniently in the
following three cases: s = 1,s # 1, N and s = N.

A. The Source Located in the First Region

As the electric and magnetic current sources are located
in the first layer, (11b) and (11c¢) can be written in the terse
combined form

N1)TE,TM N~1)TE,TM (N —2)TE, TM 2)TE,TM
.T(l)TE,TM(C(ll)TE,TM+A1)

e e
tmn emn

_p®

grn
cmn

C(I)TE,TM + Ay,

e
omn

15)
Since two components of CéﬁQTE’TM vanish, the coeffi-
cients for the first layer and the last layer can be obtained by
solving (11a) and (15). After obtaining the coefficients for the
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layers can be derived easily from the recurrent relation. The
coefficients are given by

(F) (=) (Famn)ooe =12

(Fln)2267%0 (F)(+=) (Fipdn)are=+05o
(16a)

(11)TE,TM _

e =
omn

FUVTETM _ (i)(+—)(F§2n)zle“W°

" (Fz(fllzn)m@mz“ (jF)(+—)(Fg(:r3n)21€_”1z° 7
(16b)
1 —2y1 2
yTE M _ (&) (+=) (Fipn 216 ™72
" (ES 2o () (=) (FD e
(16¢)
1 Y12
'(11)TE,T™ _ —(Fg(nzn)me V1%
emn (Fg(rlrzn)memlzo (:F)(+_)(F57(7173n)21e—i'y1z0
(16d)
CUDTETM _ (e~ )TE,TMp(¢=2)TETM | p(2)TE,TM
‘mn — S imn emn emn
‘Tgr)LEE,TM(Cé%LTE,TM_I_Al)y (17
and
ST = (PO )1 aG ™™™ o (B8 s
"(11)TE,TM (18a)
smn ?
AT (B BT+ (A

+ (Fon)1i- (18b)

B. The Source Located in the Intermediate Region

To derive the coefficients in each layer is not so easy when
the sources are located in the intermediate layers. From (11b)
and (11c), we have

CWITETM _ p(N-DTE,TMn(N=2)TE,TM _(s)TE,TM

gmn e o o
. [Tgfm—nl)TE,TM N T(%EETMTE;{?LETM
'CgrsLZLTE’TM + (4 — )
= F{n O™ ™ 4 P41 = 42). 19

Furthermore, the whole set of coefficients of the scattering
dyadic Green’s functions can be given when the sources are
located in the sth intermediate layer by

<:F>(+—>(Fg(gn)2ze—z’hzo

(B )220 () (4 =) (FL, Jpre—no
(20a)

(1s)TE, TM __
smn -

() (+=)(F) )z emrmao
(FSL ) 22620 (F) () (F)aren

(1s)TE,TM _
/Bgmn

first layer and the last layer, the results for the intermediate (20b)
(&)TE, TM 1 etlre=res1)ze Rg?n%TMe"i(WﬂLWH)Ze
Timn " = ZrrEaw REETM gilyetresn)ss  gmilve—vern)ae } (13b)
cmn o
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'(15)TE,T™ _ (F. g(iin)zze’“ o
" (Fid)azem=o (F)(+ =) (F )are—in=o
(20¢)
ﬂ’(ls)TE,TM _ *(Fg(ifn)zle"%
" (FS ) e () (+- ) (FXm e~
(20d)
CTETM _ p(¢-D)TE,TM
s . ;1(2};ETM (Tésn: TETM T(L)ELETM
COITET™M L H(E— 5 — 1) Ay
—H(l - 5)A3)
2D
and
S B = (B )11 @l 4 (FO) 1
%(T}LST?TE’TM — (F$))e, (22a)
FENTTEIM = (L) )1 BT ™ 4 (FE) )1a

. IB'(ls)TE,TM + (F(s)

emn emn ) 11 (22b)
where H(£ — £y) (equal to 1 for £ > £y and 0 for £ < {4p)
denotes the step function.

C. The Source Located in the Last Region

Following the procedure similar to the above, we have

CNNTEIM _ qp(N=1)TE,TMpy(N=2)TE,TM __ p(2)TE,TM

cmn cmn emn emn
1)TE, TM ~(1N)TE,TM
T ciM) A,

€ €
emn emn

— () QULTET™M _ Az.-

cmn’Smn (233)

When the EM sources are located in the last layer, only half
of the coefficients for the scattering dyadic Green’s functions
need to be obtained. Therefore, the coefficients can be given
as follows:

(F)(—)em e

(1N)TE,TM __
S (PR )mem s (F) (+-) (B )me o
(24a)
"(1N)TE,TM _ g
T (ER ) menen () (- ) (Fld ) are e
(24b)
Cél;.;)"TE,TM :Téer;l—i)TE,TM . Tis;zl}“LETM (Tésm—;)TE,TM o
. Téi,)lgE’TMGSn]\QTE’TM) (25)
and
i TETM = (Fg(rlrzn)lla;n@TE’TM + (Fo)1
;;(T}L]T\LI)TE,TM' ' 26)
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Fig. 2. Geometry of the semi-infinite rectangular waveguide with one load.

V. APPLICATION TO SEMI-INFINITE
WAVEGUIDE WITH ONE LOAD

The dyadic Green’s functions have different mathematical
forms when the current source is located in the different
regions of the waveguide. When the semi-infinite waveguide
has one load, the waveguide can be considered as one filled
with a two-layered medium. In this case, the dyadic Green’s
functions can be reduced from (15) in sequence in the order
of the source present in regions I and II

FO  _pOTETM _ 1
cmn = L gmn = ZITETM .
cEmn

etlri—72)z1
» ° .
et m=—"2)=

E,T :
’R;l;rnn» Mel('Yl +v2)21
(]

b 3]

A. Excitation Source Present in Region I

Ri;ﬂ%TM e~ vtz }
7

(272)

FO 1= (27b)

e
omn

The scattering dyadic Green’s function represents the con-
tribution due to the presence of the waveguide interfaces
perpendicular to z-direction. Thus, taking the reflected waves
into account when the source is located in region I shown in
Fig. 2 (i.e., s = 1), we may construct the scattering Green
dyadic as follows according to (10):

for f = 1, ‘

—(11) P e = 2 — 8o
G. s (r,v') = A ;n;) A
AM (1) [ M (1)
+ B E MY (—1)]
+ Nomn (1) [0 ™ Nl (1)
+ B M N (=)
+ M (~71) [ "ML (1)
+ B E M (=)
+ Nomn(~70) [0 N (1)
+ B TN o (1)1}
(20<z<z1320< % <21)

(28a)
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and for f = 2,

G(21) /

'zz”(’

= v1k2
-{Memnwz)[asiifEMzmn( 1)
+B(2”TEMimn( —71)]
+ Nomn (v2)[aSn ™ Nl (1)

/6(21)TMN{’mn( ’71)]}a

(m1<z<o0;20<2' <21) (28b)

"(f5)TE,TM

€ "
smn

where the coefficients aé{,f%TE’TM, ﬂ(f s)TETM

and 3., (f S)TE ™ are determined from the boundary conditions.

From the boundary conditions in (3a)~(3c), the general so-
lutions of these coefficients of scattering dyadic Green’s func-
tions in each of the regions have been obtained in (16a)-(18b)
when the EM current sources are located in region I. The
unknowns in (28) are coefficients for the special case and
can be reduced directly from the general solutions obtained
in (16a)—(18b). When the excitation source is located in the
first region, six sets of coefficients of the scattering Green
dyadic are derived. They are given, for region I, by

(11)TE,TM

1 —1 2
Smn =F)(+-) srEmwe Pz, (29a)
emn
RITE,TM
11)TE,TM cmn et (e—z
BB = () (+ )DT—EW n(z=20) - (29p)
ITE,T™
"(11)TE, T™ +— ,R'e’m”l 7,271 (21—20) 29
tmn ( )( ) DTETM ’ ( C)
RITE,TM
™ _ 4 i2v1 2
/3 (11)TE D%nTh{ e i2v1 21 (29d)
and for region II
g
#1TE, TM
(21)TE, TM 7-;mn 1(71—"/2)21—1271%
Smn (?)(*“)W ;
cmn
(30a)
(21)TE T™ Tetrlz}:E’TM _
g - _m_el(’h v2)z1 (30b)
Demn
where
nggE _ P23 — @2,3’)’1,2’ (31a)
$1,272,3 + ©2,371,2
R1L2TM _ 2372, ski o — p10m 2k3 3 31b)
o ©2,372,3k% 2t o127 2k3 5
,];*1 2TE _ ¢ _ Rl 2TE 31c)
" k
Ton ™ = 222 (1 - REZTM), (31d)
2,361,2
Dl = UF )R e =) Gle)

It should be pointed out that the parameters Tem (1 2)(TE,TM)

are not the same as T a, 2)(TE ™ in (12¢) and (12d). It
should also be pointed out that the same expression of the
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'(11)TE, T™M
coefficients .., g(mn) '

of the dyadlc Green s functions.

VTETM 4hd shows the symmetry

B. Excitation Source Present in Region II

Using a method similar to the above, the scattering dyadic
Green’s function in the case of the sources located in region
II shown in Fig. 2 (i.e., s = 2) can be written as follows for:

f=1

—(12) , _i e 2 — by
G%S("'a"')—abz_:zz k2

n=0 m=0 ¢
12)TE 12)TE
Al M (1) + ane)
) Memn( 71)]Memn(’72)
+ o gﬁZLTMN"mn(’Y )+ ae(lZ)TM
) N:mn( 71)] Omn(’-yz)}
(20 <2< 21521 <2 < 00) (32a)
and for f = 2
(22) , ) 2 — g
G
ab ZOmZO Yok?
[0 M (12) M, (2) + 022
*Nomn(12)No,, (72)],
(21 < 2<00;21 < 2/ < 00) (32b)
'(fs)TE, TM

where the coefficients a(f s TE,TM ﬂ(f S)TEIM | (F9) ,

and ﬁ(f STETM ore detennlned from the boundary conditions.
These three sets of coefficients are given, for region I, by

1TE,TM
(12)TE, TM Zm” L('yl —Y2)z1—271%
emn (:F)(+ ) DTE TM ’
cmn
(33a)
) JATE,TM
(12)TE,TM _ “gmn et(T2=72)z1 33b
emn TE,TM ’ (33b)
Demn
and for region II
1TE, TM 121 (21—
(22)TE,T™M _ Remn  (F)(+—)ei2n(za=20) —2y3
emn DTE T™ € :
(34

VI. DISCUSSION AND CONCLUSION

A. Comparison with Jarem’s Results

Previously, Jarem [7] derived the yy-component of the
dyadic Green’s function for defining the electromagnetic fields
due to an electric current distribution in a semi-infinite rect-
angular waveguide with one load. Since the probe used in [7]
is located in region I, the dyadic Green’s function that Jarem
derived should be the one associated with (28a). Although
Jarem also used the principle of scattering superposition to
construct the needed dyadic Green’s function, his idea to
achieve the goal is slightly different from the one presented
here. The difference can be seen from the following aspects.



LI et al.: RECTANGULAR WAVEGUIDE WITH ARBITRARY MULTILAYERED LOADS' PART I

The Green dyadic in the semi-infinite rectangular waveguide
with loads usually consists of two parts. Jarem assumed that
the principal part corresponding to ¥g(z,2’) is the Green
dyadic in the semi-infinite rectangular waveguide without load
and the additional part corresponding to ¥TE(z, 2’) (for TE
waves) and UTM(z 2') (for TM waves) results from the
transmission and reflection due to the semi-infinite load’s
interface. This paper assumes that the principal part is the
Green dyadic in the rectangular infinite waveguide without
load and the additional part results from the transmission and
reflection due to all the interfaces perpendicular to z-direction.

From (9) and (28a), the ¢y-component of the Green dyadic
can be written as follows by letting k1 = ko, and Vpm = #y1 =
k2 — k7 and taking only the electric type of the Green dyad

Gyy = 2(2

n=1m=0 ’Ynm

lI'S(z 2+ UTE(, 2")

!
+ ™M (5 2))) sin n (2 + 2o) sin n(2’ + 2o)
a
/
cos MW A 0) Y+ o) (35)
b b
where
mm [b)% — k2]k2
‘I’S(Z,Z/) — [( / )k2 1]
1
[ ermmGE=) sinh [y (2 — 20)] 22 2
sinh [Yum(z — zo)]e')’nm(z/_zo) z< 2,
(362)
TE N ILI 2 2FTE62’ynm (Zl—Z())
q]L (Z,Z ) _( a ) 1 +FTE627nm(21*ZQ)
- sinh [Ynm (2 — 20)] sinh [Ynm (2" — 20)],
(36b)
2 TM ,27nm (21 —20)
™, oy (M2 )T 2T e
\IJL (Z,Z ) = ( b ) (kl) 1 _|_]_"TM62'ynm(zl—zo)
- sinh [ynm (2 — 20)] sinh [ynpm (2" — 20)],
(36¢)
pTE — A7z — e (36d)
p1y2 + pavi’
FTM — u2f72k% B /Jfl'ylk% (363)

pav2ki + ks

The result presented by (35) together with (36a)-(36e) is
more complete and generalized than the Green function given
by Jarem [7] because the result obtained here is a full-wave
analytical solution of Gy, and no approx1mat1on has been
made in the above expression. The expression G y given by
Jarem [7] does not have the contribution from the TM modes
and higher-order TE modes as well. If we assume that only
TE1o-mode waves, i.e (n,m) = (1,0) in (35) together with
(36a)—(36¢), propagate in the semi-infinite waveguide with
a load, the approximate results are exactly Jarem’s formula
of GA [7], except that the reflection coefficients for the
TE modes of different orders are assumed to be the same.
Certainly, both the reflection and transmission coefficients of
the TE and TM modes should be different, as can be seen
from the results presented here and those given by Tai [1] for
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a medium of various geometries. This shows the applicability
and generalization of the method presented.

B. Reduction to Semi-infinite Waveguide without Load

The dyadic Green’s functions are obtained for defining the
electromagnetic fields due to the electric and magnetic current
sources located in the semi- infinite rectangular waveguide
with multiple loads. If the loads disappear on the assumption
that the multi-layered media have the same dielectric constant,
the derived general formulae of dyadic Green’s functions for
the waveguide with multiple loads should reduce directly to
the results for the waveguide without load. To demonstrate
how the coefficients of the dyadic Green’s functions are
reduced to the simple forms, we use the expression obtained
in (29a2)—(30b) and (33a)—(34) as an example.

In fact, ;1 = =2 when the different layers have the same
dielectric constant. Thus, it can be seen from (31a)-(31e) that

RITE T™ = O

«*1TE, TM
emn 7. ’ =1,

€
cmn

PIETM _ ¢
emn = L.
Furthermore, from (10), we can see that in the expressicn of
the dyadic Green’s function in (32b), only the terms containing
the coefficients a;rmn exist. From (29a), (30a), (33a) or (34),
we find

TE, TM

Qe emn

= (F) ().

This result agrees very well with the electric and magnetic
types of Green dyads presented earlier in [5], which once again
demonstrates the applicability of the present method.

37

C. Reduction to Rectangular Cavity Case

Furthermore, we may reduce the formulae of dyadic Green’s
functions and their coefficients for the semi-infinite rectangular
waveguide to those for the rectangular cavity. Region I of the
geometry shown in Fig. 2 can be considered as a rectangular
cavity when the load of the semi-infinite rectangular wave-
guide is filled with conducting material. This reduction can be
achieved easily by assuming that ¢ — oo. That means

€9 25(1+£) o~ EU—‘lioioo.
we we
Thus, the coefficients for such a cavity can be obtained from
(292)—(29d). It has been proven that the coefficients reduced
here are exactly the same as those obtained by Li et al. [5]
from boundary conditions.

From the above discussions, we may draw the following
conclusions. The electric and magnetic types of dyadic Green’s
functions for a rectangular waveguide with multiple loads
have been analytically formulated from the corresponding
boundary conditions for the general case. Rigorous and gen-
eral expressions of the dyadic Green’s functions and their
coefficients are obtained in terms of recurrent transmission
matrices. By reducing these general expressions, the dyadic
Green’s functions and their coefficients for the semi-infinite
rectangular waveguide with one load are further derived and
compared with the ff-component presented in previously
published work. The results presented here are more complete
than Jarem’s results [7]. After reduction of the general results
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for the special cases, the good agreement 1) between Jarem’s
yy-component of dyadic Green’s functions and the results
specially reduced here, and 2) between the dyadic Green’s
functions presented earlier by Li et al. [S] and the dyadic
Green’s function reduced here from the general formulae, has
demonstrated the applicability of both the results obtained
and the method presented. A full-wave numerical analysis of
input impedance of a probe-excited semi-infinite rectangular
waveguide will be carried out in Part IT of this paper by using
the dyadic Green’s functions presented in this part.
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